
Chapter 6

Numerical computation method

Generally, the equation of motion, the equation of potential temperature derived
by the equation of thrmodynamics, the equation of pressure derived by the continity
eqution and the eqution of gaseous state, and the equations of water vapor and
hydrometeors are solved simultaneously and integrated with respect to time under
appropriate boundary and initial values in cloud resolving models.

In CReSS, the equation of motion, the equations of the potential temperature
perturbation and the pressure perturbation, and the equations of hydrometeors and
water vapor which are shown in Chapter 2 ’Formulation of the system of basic equa-
tions’ are also temporally and spatially integrated by using finite difference method.
There are many studies about the methods which are discretizated and integrated
these equation systems and the various calculation techniques are established.

In this chapter, the structure of a grid point, the method of discretization, the
method of time integration and so on are explained about the numerical computation
method used by CReSS.
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6.1 The discretization of basic equation system

6.1.1 The outline of the numerical solution

There are various techniques from the selection of dependent variables to the method of time integration
in the numerical solution by cloud resolving models. The outline of the numerical solution used in CReSS
is as follows.

• The basic equation system is the equation of motion, potential temperature perturbation, pressure
perturbaton, water vapor and hydrometeors.

• The dependent variables are three-dimensionl velocity components u, v, w, potential temperature
perturbation θ′, pressure perturbation p′, mixing ratio of watar vapor, and mixing ratios and number
concentrations of hydrometeors.

• The basic equations are defined by a terrain-following curvilinear coordinates are used to include the
effect of orography.

• The finite differences are used for the derivation of the dependent variable with respect to space. The
types of Arakawa-C and Lorenz staggered grids are used for hrizontal and vertical grid arrangement,
respectively.

• The sound wave is contained as a solution by using compressible equation system. The terms related
to the sound wave are integrated with small time step ∆τ , the other terms are integrated with large
time step ∆t.

• The leap-frog scheme with the Asselin time filter is used for time integration with respect to the large
time step.

• The explicited forward-backward scheme or the inplicited Crank-Nicolson scheme in only vertical is
used for time integration with respect to the small time step.

• The effects of sound wave are weakened by adding the divergence terms explicit scheme with the
small time step.

Furthermore, ξ, η are expressed as x, y in this chapter as it is ξ = x, η = y in a terrain-following
coordinates.

6.1.2 Grid in the model and setting of variables

As the space are represented by the method of grid points in CReSS, finite difference method is used
for the spatial derivation. Here, the strucuture of grid points and the setting of variables in CReSS are
shown.

The strucuture of grid points and the setting of variables are set on the staggered grid 1 as Fig6.1 in
horizontal and vertical. Arakawa-C grid and Lorenz grid are used for the settings of horizontal and vertical
grid points, respectively.

In this case, the point of the all scalars, such as pressure perturbations, potential temperature pertur-
bation, mixing ratios of watar vapor and physical quantities of hydrometeors, are located at the center of
the grid box2.

The point of x-component velocity u is dislocated to a half interval from the center of the grid in the
x-direction, the point of y-component velocity v is dislocated to a half interval from the center of the grid
in the y-direction in horizontal. The point of u and v are defined at the same level as the scalars points.
The point of z-component velocity w is vertically dislocated at a half interval just above and below the
scalar variables points.

1There are various setting in the staggered grid which variables are defined alternately.
2The point of potential temperature (temperature) and the point of pressure are located at the same level in Lorenz grid.

On the other hand, the point of potential temperature (temperature) is dislocated at a half interval below the pressure point,
and defined at the same level as the vertical velocity point in the Charney Phillips’ grid.
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Figure 6.1. Structure of the staggered grid and setting of dependent variables.

Furthermore, as a terrain-following coordinate is used in CReSS, the Jacobian with transform for
coordinates G

1
2 and the metric tensor which is not zero or 1, that is, J31, J32, Jd (= G

1
2 ) are shown as

follows. The G
1
2 (= Jd) point is defined at the same level as the scalars points. The J31 point is dislocated

to a half interval from the center of the grid in the x-direction and the z-direction. The J32 is dislocated
to a half interval from the center of the grid in the y-direction and the z-direction.

The coordinates x, y, ζ which are set on the staggered grid as shown in Fig 6.1 are difined as the vectors
points. The domain in a thick line except the most outside grid points is the physical domain as shown in
Fig6.2. So four grid points in the direction without a dimension need to be calculated at the time of the
2-dimensional caluculation.

6.1.3 Discretization by finite difference method

Generally, since elastic equations without any approximations are used in the cloud resolving model as
the basic equations, all waves in the atmosphere are represented in the model. Waves in the atmosphere
are divided into the sound wave, the gravity wave and the Rossby wave by phase velocity or frequency,
and the phase velocities become small in this order. The phase velocity of sound wave is the fastest but
we have no meteorological interest for it. On the other hand, the gravity wave and the Rossby wave are
important for a cloud and a mesocale meteorological phenomena3 However, the sound wave is contained
in models with elastic equation system, and the special technique is needed to be used for the calculation
about the wave. So the time step is very small to satisfy CFL condition for the sound wave which the
phase velocity is fastest if the time integration is calculated explicitly in meteorological models the generall
numerical integration for fluid. However, the time steps for the gravity and the Rossby waves which are
meteorologically important are satisfied with the much larger time step than that of the sound wave, since
the phase velocities of these waves are much slower than the sound wave.

There are various calculation techniques not to make the time step of the sound wave small4. The
well-known calculation techniques are as follows.

HI-VI
method

The terms of the sound wave are solved inplicitly, and the other terms are solved
explicitly. This technique is called semi-inplicit time integration method5.

3The Rossby wave is important for larger scale phenomena in mesocale meteorology, synoptic meteorological phenomena
and planetary meteorological phenomena. Weather is influenced by the Rossby-scale atmospheric phenomena every day, and
usual forecast models represent these phenomena.

4If the anelastic equation system by Ogura and Phillips (1962) is used for the basic equation system in a numerical model,
the time step can be defined by the phase velocity of gravity wave because the sound wave is not contained in this equation
system. In this case, pressure is calculated by the equation of motion and the continity eqution. There are the advantage
that the sound wave is removed, but the demerits of which the equation of pressure is complicated and a error is large at the
place with large variations of density in this techniques.

5The terms with large time step are explicitly calculated and the other terms are inplicitly solved in the semi-inplicit
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HE-VE
method

The terms of the sound wave and the other terms are solved explicitly using different
time steps, respectively. This technique which is called the mode-splitting technique
(Klemp and Wilhelmson, 1978) is often used.

HE-VI
method

This technique is almost the same as the mode-splitting technique. But the terms of
the sound wave are solved inplicitly in vertical.

The schematic representation of this mode-splitting technique is shown in Fig6.3.

Many data are exchanged between some nodes in the case of using parallel computer since large simul-
taneous equations are solved in the HI-VI method. The HE-VE method or HE-VI method are used in
CReSS since it is assumed to be mainly used on a parallel computer. These techniques are easy to be
applied to the large parallel computing since the phisycal space are corrsponded to the setting of a node
and only the data in halo region of a node communicates between nodes. The detail description is shown
in 7 ’Mounting of a parallel processing’. The efficiency of calculation does not become so bad to integrate
the terms with respect to sound wave in small time step.

time integration method. For example, the semi-inplicit time integration method of which the terms for the gravity wave are
explicitly solved, and the other terms are solved by using the leap-frog scheme is used in the model of JMA.
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Figure 6.3. The schematic representation of the mode-splitting technique.
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The method of discretization for physical quanities with the sound wave mode

The method of discretization for physical quantities with the sound wave mode is shown from here. The
gravity wave mode is calculated with the large time step. In this case, the discretizations for potential
temperature, mixing ratios of watar vapor, mixing ratios and number concentrations of hydrometeors is
not took into consideration as they are calculated in the large time step.

Physical quantities with the sound wave mode are shown in the basic equation system in CReSS. In
the following equations, [rm] is indicates terms which are related to the Rossby wave mode (rotational
mode), [gm] the gravity wave mode (divergence mode) and [am] the sound wave mode, respectively. Terms
of physical processes are indicated by [physics].

The equation of motion

∂u∗

∂t
= −

(
u∗ ∂u

∂x
+ v∗ ∂u

∂y
+ W ∗ ∂u

∂ζ

)
︸ ︷︷ ︸

[rm]

−
[

∂

∂x
{Jd (p′ − αDiv∗)} +

∂

∂ζ
{J31 (p′ − αDiv∗)}

]
︸ ︷︷ ︸

[am]

+(fsv
∗ − fcw

∗)︸ ︷︷ ︸
[rm]

+G
1
2 Turb.u︸ ︷︷ ︸

[physics]

(6.1)

∂v∗

∂t
= −

(
u∗ ∂v

∂x
+ v∗ ∂v

∂y
+ W ∗ ∂v

∂ζ

)
︸ ︷︷ ︸

[rm]

−
[

∂

∂y
{Jd (p′ − αDiv∗)} +

∂

∂ζ
{J32 (p′ − αDiv∗)}

]
︸ ︷︷ ︸

[am]

− fsu
∗︸︷︷︸

[rm]

+G
1
2 Turb.v︸ ︷︷ ︸

[physics]

(6.2)

∂w∗

∂t
= −

(
u∗ ∂w

∂x
+ v∗ ∂w

∂y
+ W ∗ ∂w

∂ζ

)
︸ ︷︷ ︸

[rm]

− ∂

∂ζ
(p′ − αDiv∗)︸ ︷︷ ︸

[am]

−ρ∗g

⎛
⎜⎜⎜⎝ θ′

θ̄︸︷︷︸
[gm]

− p′

ρ̄c2
s︸︷︷︸

[am]

+
q′v

ε + q̄v
− q′v +

∑
qx

1 + q̄v︸ ︷︷ ︸
[physics]

⎞
⎟⎟⎟⎠+ fcu

∗︸︷︷︸
[rm]

+G
1
2 Turb.w︸ ︷︷ ︸
[physics]

(6.3)

The equation of pressure

∂G
1
2 p′

∂t
= −

(
G

1
2 u

∂p′

∂x
+ G

1
2 v

∂p′

∂y
+ G

1
2 W

∂p′

∂ζ

)
︸ ︷︷ ︸

[rm]

+G
1
2 ρ̄gw︸ ︷︷ ︸
[am]

− ρ̄c2
s

(
∂G

1
2 u

∂x
+

∂G
1
2 v

∂y
+

∂G
1
2 W

∂ζ

)
︸ ︷︷ ︸

[am]

+G
1
2 ρ̄c2

s

(
1
θ

dθ

dt
− 1

Q

dQ

dt

)
︸ ︷︷ ︸

[am]

(6.4)

These equation systems are made discrete by using finite difference method and integrated for the grid
system as Fig 6.1. However, the equalization is required to calculate at the same point as using the
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staggered grid. So the equalization operator is defined as follows. With respect to some physical quantities
φ, the equalization operator in the x-direction is defined as follows. Moreover, the i-th grid point number
from the side is represented as the subindex.

φ
x

i =
1
2

(
φi− 1

2
+ φi+ 1

2

)
(6.5)

Furthermore, the average of four grid points in the 4th order central difference is defined as follows.

φ
2x

i =
1
4

(
φi− 3

2
+ φi− 1

2
+ φi+ 1

2
+ φi+ 3

2

)
(6.6)

In the case with two indexes of equalization, the equalization operator for x, z is defined as follows (The
indexes of grid point number are represented as i and k in the x-direction and the z-direction, respectively.).

φ
xz

ik =
1
4

(
φi− 1

2 ,k− 1
2

+ φi+ 1
2 ,k− 1

2
+ φi− 1

2 ,k+ 1
2

+ φi+ 1
2 ,k+ 1

2

)
(6.7)

Moreover, the differential operator is defined by representing the grid interval as ∆x in x-direction as
follows. The i-th grid point number from the side is also represented as the subindex.

(∂xφ)i =
1

∆x

(
φi+∆x

2
− φi−∆x

2

)
(6.8)

(∂2xφ)i =
1

2∆x
(φi+∆x − φi−∆x) (6.9)

Dependent variables in the numerical computing are defined by using these values as follows.

ρ∗ = ρ̄G
1
2 (6.10)

u∗ = ρ̄G
1
2

x

u (6.11)

v∗ = ρ̄G
1
2

y

v (6.12)

w∗ = ρ̄G
1
2

ζ

w (6.13)

W ∗ = ρ̄G
1
2

ζ

W (6.14)

Here, the density ρ̄ and the Jacobian G
1
2 for coordinate transformation are defined at the same point as

the scalars. The vertical velocity W in a terrain-following coordinates and the vertical velocity w in the
Cartesian coordinates are defined at the same point.

W =

(
uζJ31

x
+ vζJ32

y
+ w
)

G
1
2

ζ
(6.15)
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In the case of explicit scheme, descretization of the equations of (6.1) ∼ (??) are given with respect to
u, v, w, p′ as follows.

ρ∗x uτ+∆τ − uτ

∆τ
= −

[
∂x (JdPα) + ∂ζ

(
J31Pα

ζx
)]τ

+ F t
u (6.16)

ρ∗y vτ+∆τ − vτ

∆τ
= −

[
∂y (JdPα) + ∂ζ

(
J32Pα

ζy
)]τ

+ F t
v (6.17)

ρ∗ζ wτ+∆τ − wτ

∆τ
= − [∂ζPα]τ −

[
gG

1
2

p′

c2
s

ζ]τ

+ F t
w (6.18)

G
1
2

ζ p′τ+∆τ − p′τ

∆τ
= −ρ̄c2

s

[
∂x

(
G

1
2

x

u
)

+ ∂ζ

(
J31u

ζ
x)

+ ∂y

(
G

1
2

y

v
)

+ ∂ζ

(
J32v

ζ
y)

+ ∂ζw
]τ+∆τ

+gρ∗
[
wζ
]τ+∆τ

+ F t
p (6.19)

where

Pα = p′ − αDiv∗ (6.20)

Div∗ =
1

G
1
2

(
∂u∗

∂x
+

∂v∗

∂y
+

∂W ∗

∂ζ

)
(6.21)

where α is a factor of damping for divergence terms to weaken the effects of the sound wave. The terms
concerning the sound wave, which are integrated with a small time step ∆τ , are explicitly written, the
other terms are included in F t

φ (φ = u, v, w, p′). The first term on the right side in the equations of (6.16)
and (6.17), and the second term on the right side in the equation of (6.18) are pressure gradient force term.
Buoyancy force with pressure perturbations and divergence damping are shown by the first and third term
on the right side in the equation (6.18), respectively. The first term on the right side in the equation of
(6.19) is a divergence term and the second term of that is a vertical advection term.

When terms for sound wave are solved explicitly, u, v, and w are calculated by the equations of (6.16) ∼
(6.18) with forward-difference for ∆τ . Using the values of u, v, and w, pressure perturbation p′ is calculated
by the equation of (6.19) with backward-difference for ∆τ . During this integration with a small time step
for 2∆τ (= n∆τ), F t

φ is constant. Terms of the sound wave in most of non-hydrostatic models are not
solved explicitly in vertical and horizontal. Although some models (e.g. ARPS) include the HE-VE scheme
as an option, the NHM of Meteorological Research Institute adopts the HI-VI and HE-VI schemes. The
technique to solve inplicitly in only vertical is described later. However, it is not necessarily that terms for
sound wave are calculated inplicitly in vertical when the horizontal resolution is the same as the verical
resolution as an object of CReSS. There is a option to calculate the gravity mode in the small time step
in CReSS. This technique is also shown later. The gravity wave mode is integrated in the small time step
in ARPS and in the large time step in NHM.
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In the case of using vertical implicit scheme, the equations of verical velocity w and pressure perturbation
p′ in the equations (6.18 and 6.19) are replaced by the following equations.

ρ∗ζ wτ+∆τ − wτ

∆τ
= [∂ζ(αDiv∗)]τ −

[
β (∂ζp

′)τ+∆τ + (1 − β) (∂ζp
′)τ
]

−
⎡
⎣β

(
gG

1
2

p′

c2
s

ζ)τ+∆τ

+ (1 − β)

(
gG

1
2

p′

c2
s

ζ)τ
⎤
⎦+ F t

w (6.22)

G
1
2

ζ p′τ+∆τ − p′τ

∆τ
= −ρ̄c2

s

[
∂x

(
G

1
2

x

u
)

+ ∂ζ

(
J31u

ζ
x)

+ ∂y

(
G

1
2

y

v
)

+ ∂ζ

(
J32v

ζ
y)]τ+∆τ

−ρ̄c2
s

[
β (∂ζw)τ+∆τ + (1 − β) (∂ζw)τ

]
+gρ∗

[
β
(
wζ
)τ+∆τ

+ (1 − β)
(
wζ
)τ]

+ F t
p (6.23)

These equations are gained by averaging for τ and τ + ∆τ of the equations (6.18) and (6.19) weighted by
β. The equations of w (6.22) with β = 0 and p′ (6.23) with β = 1 result in the equations of (6.18) and
(6.19), respectively. When β = 0, (6.22) and (6.23) are teh simultaneous equations for wτ+∆τ and pτ+∆τ .
They are implicitly calculated in vertical wtih the Crank-Nicolson scheme.

In the vertical implicit scheme, the forward difference for the equations of (6.16) and (6.17) are calculated
and the values of u and v at τ + ∆τ are gained. In the vertical implicit scheme, the forward difference
for the equations of (6.16) and (6.17) are calculated and the values of u and v at τ + ∆τ are gained.
Concerning p′τ+∆τ from (6.22) and (6.23), we get the following equations for w and p.

ρ∗ζ wτ+∆τ − wτ

∆τ
= −∆τβ2∂ζ

(
gρ∗

G
1
2

wζ − ρ̄c2
s

G
1
2
∂ζw

)τ+∆τ

−∆τβ2g

(
gρ∗

c2
s

wζ

ζ

− ρ̄∂ζw
ζ

)τ+∆τ

+ F ′
w (6.24)

where F ′
w and F ′

p are

F ′
p =

∆τ

G
1
2

[
F t

p + (1 − β)
(
gρ∗wζ − ρ̄c2

s∂ζw
)τ]

−∆τ

G
1
2
ρ̄c2

s

[
∂x

(
G

1
2

x

u
)

+ ∂ζ

(
J31u

ζ
x)

+ ∂y

(
G

1
2

y

v
)

+ ∂ζ

(
J32v

ζ
y)]τ+∆τ

(6.25)

F ′
w = − [∂ζPα]τ −

[
gG

1
2

p′

c2
s

ζ]τ

− β

⎡
⎣gG

1
2 F ′

p

c2
s

ζ

+ ∂ζF
′
p

⎤
⎦+ F t

w. (6.26)

The second-order discretization in vertical (6.24) is ordered as follows for the unknown wτ+∆τ .

Akwτ+∆τ
k−1 + Bkwτ+∆τ

k + Ckwτ+∆τ
k+1 = Fk (6.27)
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Simultaneous equations whose factors are a triple diagonal matrix are obtained as this equation. This
equation is solved simply if the top and bottom boundary conditions are given as follows, for example.

w = 0 k = nk − 1 (6.28)

w = u
∂zs

∂x
+ v

∂zs

∂y
k = 2 (6.29)

where Ak, Bk, Ck, Fk are known quantities at τ . These quantities are given under the boundary conditions
of (6.28) and (6.29) as follows.

Ak =

⎧⎪⎨
⎪⎩

0(
−Qkc2

sk−1 + PkG
1
2
k−1

)
(Rk−1 + Sk−1) ,

k = 3

4 ≤ k ≤ nk − 2
(6.30)

Bk = 1 + Qk

{
(Rk + Sk) c2

sk − (Rk−1 − Sk−1) c2
sk−1

}
+Pk

{
(Rk + Sk)G

1
2
k − (Rk−1 − Sk−1)G

1
2
k−1

}
, 3 ≤ k ≤ nk − 2 (6.31)

Ck =

⎧⎪⎨
⎪⎩
(
Qkc2

sk + PkG
1
2
k

)
(Rk + Sk) ,

0,

3 ≤ k ≤ nk − 3

k = nk − 2
(6.32)

Fk =

⎧⎨
⎩

F ′
wk + wτ

k + uζ
k (∂xzs)k + vζ

k (∂yzs)k ,

F ′
wk + wτ

k ,

k = 3

4 ≤ k ≤ nk − 2
(6.33)

Pk =
∆τ2β2g

2ρ∗k
ζ

, Qk =
∆τ2β2

∆ζkρ∗k
ζ
, Rk =

gρ∗k
2G

1
2
k c2

sk

, Sk =
ρ∗k

∆ζkGk
(6.34)
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This simultaneous equation (6.27) is represented by a matrix by replacing wτ+∆τ
k with wk as follows.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B3 C3 0 · · · · · · · · · 0
A4 B4 C4 0 · · · · · · 0
...

...
...

...
...

...
...

0 · · · Ak Bk Ck · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · · · · Ank−2 Bnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w3

w4

...
wk

...
wnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F3

F4

...
Fk

...
Fnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.35)

The forward elimination and the backward substitution are carried out to solve this matrix by the Gaussian
Elimination. The first line in (6.35) are divided by B3 to carry out the forward elimination.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c3 0 · · · · · · · · · 0
A4 B4 C4 0 · · · · · · 0
...

...
...

...
...

...
...

0 · · · Ak Bk Ck · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · · · · Ank−2 Bnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w3

w4

...
wk

...
wnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f3

F4

...
Fk

...
Fnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.36)

where c3 = C3 /B3 and f3 = F3 /B3 . The diagonal components of the values which subtracted from the
second line to the values which multiplied the first line by A4 are standardized as follows.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c3 0 · · · · · · · · · 0
0 1 c4 0 · · · · · · 0
...

...
...

...
...

...
...

0 · · · Ak Bk Ck · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · · · · Ank−2 Bnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w3

w4

...
wk

...
wnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f3

f4

...
Fk

...
Fnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.37)

where c4 = C4 /(B4 − A4c3) and f4 = (F4 − A4f3) /(B4 − A4c3) . Similarly, using ck = Ck /(Bk − Akck−1)
and fk = (Fk − Akfk−1) /(Bk − Akck−1) ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c3 0 · · · · · · · · · 0
0 1 c4 0 · · · · · · 0
...

...
...

...
...

...
...

0 · · · 0 1 ck · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w3

w4

...
wk

...
wnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f3

f4

...
fk

...
fnk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.38)

Finally, solutions for all k are obtained to carry out the backward substitution in order of k = nk−2, nk−3
and · · · , 4.
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wnk−2 = fnk−2

wnk−3 = fnk−3 − cnk−3wnk−2

...
wk = fk − ckwk+1

...
w4 = f4 − c4w5

w3 = f3 − c3w4

(6.39)

The term (F t
φ) which is calculated with the large time step is represented as follows.

F t
u = −Adv.ut +

[
ρ∗fsv

yx − ρ∗fcw
ζ
x]t

+
[
G

1
2 Turb.u

]t−∆t

(6.40)

F t
v = −Adv.vt −

[
ρ∗fsu

xy
]t

+
[
G

1
2 Turb.v

]t−∆t

(6.41)

F t
w = −Adv.wt +

[
ρ∗ (Buoy.θ + Buoy.q)

ζ
+ ρ∗fcu

xζ
]t

+
[
G

1
2 Turb.w

]t−∆t

(6.42)

F t
p = −Adv.pt (6.43)

where Buoy.θ and Buoy.q are buoyancy terms for temperature perturbations, watar vapor and hydrome-
teors, and are defined as follows.

Buoy.θ ≡ g
θ′

θ̄
(6.44)

Buoy.q ≡ g

(
q′v

ε + q̄v
− q′v +

∑
qx

1 + q̄v

)
(6.45)

The advection term is calculated with the second or fourth-order accuracy by using the values at the
time (t). The second-order advection term is descretized as follows.

Adv.ut = u∗x
∂xu

x
+ v∗x

∂yu
y

+ W ∗x
∂ζu

ζ

(6.46)

Adv.vt = u∗y
∂xv

x
+ v∗y

∂yv
y

+ W ∗y
∂ζv

ζ

(6.47)

Adv.wt = u∗ζ
∂xw

x

+ v∗ζ
∂yw

y

+ W ∗ζ
∂ζv

ζ

(6.48)

Adv.pt = G
1
2

x

u∂xp′
x

+ G
1
2

y

v∂yp′
y

+ G
1
2

y

W∂ζp′
ζ

(6.49)

The fourth-order advection term is descretized as follows.

Adv.ut =
4
3

[
u∗x

∂xu
x

+ v∗x
∂yu

y
+ W ∗x

∂ζu
ζ
]

− 1
3

[
u∗2x

∂2xu
2x

+ v∗xy
∂2yu

2y
+ W ∗xζ

∂2ζu
2ζ]

(6.50)
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Adv.vt =
4
3

[
u∗y

∂xv
x

+ v∗y
∂yv

y
+ W ∗y

∂ζv
ζ
]

− 1
3

[
u∗xy

∂2xv
2x

+ v∗2y
∂2yv

2y

+ W ∗yζ
∂2ζv

2ζ]
(6.51)

Adv.wt =
4
3

[
u∗ζ

∂xw
x

+ v∗ζ
∂yw

y

+ W ∗ζ
∂ζv

ζ]

− 1
3

[
u∗xζ

∂2xw
2x

+ v∗yζ
∂2yw

2y

+ W ∗2ζ
∂2ζv

2ζ]
(6.52)

Adv.pt =
4
3

[
G

1
2

x

u∂xp′
x

+ G
1
2

y

v∂yp′
y

+ G
1
2

y

W∂ζp′
ζ
]

− 1
3

⎡
⎢⎣G

1
2

x

u
x

∂2xp′
2x

+ G
1
2

y

v
y

∂yp′
2y

+ G
1
2

ζ

W

ζ

∂2ζp′
2ζ
⎤
⎥⎦ (6.53)

The computing instability is caused in the calculation with discretization of central difference. So an
artificial numerical viscosity term which is shown in the following section 6.2 is added to the above terms.

Variables except for pressure in a turbulent diffusion term are applied in the turbulent diffsion terms.
The tensor for deformation velocity which are indicated in (??) ∼ (??) are solved as follows by using
calculus of finite differences.

S11 =
2

G
1
2

[
∂x

(
Jd

x
u
)

+ ∂ζ

(
J31u

ζ
x)]

(6.54)

S22 =
2

G
1
2

[
∂y

(
Jd

y
v
)

+ ∂ζ

(
J32v

ζ
y)]

(6.55)

S33 =
2

G
1
2
∂ζw (6.56)

S12 =
1

G
1
2

xy

[
∂y

(
Jd

x
u
)

+ ∂x

(
Jd

y
v
)

+ ∂ζ

(
J32

x
uζy + J31

y
vζx
)]

(6.57)

S13 =
1

G
1
2

xζ

[
∂x

(
Jd

ζ
w
)

+ ∂ζ

(
u + J31w

xζ
)]

(6.58)

S23 =
1

G
1
2

yζ

[
∂y

(
Jd

ζ
w
)

+ ∂ζ

(
v + J32w

yζ
)]

(6.59)

The divergence term Div which is indicated in 3.24 are solved as follows by using calculus of finite differ-
ences.

Div =
1

G
1
2

[
∂x

(
G

1
2

x

u
)

+ ∂y

(
G

1
2

y

v
)

+ ∂ζ

(
G

1
2

ζ

W

)]
(6.60)

Using these, the stress tensor which are indicated in (??) ∼ (??) are written by finit differences as follows.
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τ11 = ρ̄ντh

(
S11 − 2

3
Div

)
(6.61)

τ12 = ρ̄ντh
xy

S12 (6.62)

τ13 = ρ̄ντv
xζ

S13 (6.63)

τ21 = ρ̄ντh
yx

S21 (6.64)

τ22 = ρ̄ντh

(
S22 − 2

3
Div

)
(6.65)

τ23 = ρ̄ντv
yζ

S23 (6.66)

τ31 = ρ̄ντh
ζx

S31 (6.67)

τ32 = ρ̄ντh
ζy

S32 (6.68)

τ33 = ρ̄ντv

(
S33 − 2

3
Div

)
(6.69)

Finally, the turbulent diffusion terms are indicated in differences as follows.

G
1
2 Turb.u = ∂x (Jdτ11) + ∂y

(
Jd

xy
τ12

)
+ ∂ζ

(
τ13 + J31τ11

xζ + J32
x
τ12

ζ
y)

(6.70)

G
1
2 Turb.v = ∂x

(
Jd

yx
τ21

)
+ ∂y (Jdτ22) + ∂ζ

(
τ23 + J31

y
τ21

ζ
x

+ J32τ22
yζ
)

(6.71)

G
1
2 Turb.w = ∂x

(
Jd

ζx
τ31

)
+ ∂y

(
Jd

ζy
τ32

)
+ ∂ζ

(
τ33 + J31

ζ
τ31

ζ
x

+ J32
ζ
τ32

ζ
y)

(6.72)
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The method of discretization for physical quanities without the sound wave mode

When the gravity wave mode is calculated with the large time step, the equations of potential tempera-
ture, watar vapor and hydrometeors are solved with only large time step. These equations are shown by
indicating watar vapor and hydrometeors as x as follows.

ρ∗
θ′t+∆t − θ′t−∆t

2∆t
= F t

θ (6.73)

ρ∗
qt+∆t
x − qt−∆t

x

2∆t
= F t

q (6.74)

G
1
2
N t+∆t

x − N t−∆t
x

2∆t
= F t

N (6.75)

where

F t
θ = −Adv.θt +

[
G

1
2 Turb.θ

]t−∆t

+ [ρ∗Src.θ]t −
[
ρ̄

ζ
w∂ζ θ̄

ζ
]t

(6.76)

F t
q = −Adv.qt

x +
[
G

1
2 Turb.qx

]t−∆t

+ [ρ∗Src.qx]t + [ρ∗Fall.qx]t (6.77)

F t
N = −Adv.

Nx

ρ∗
t

+
[
G

1
2 Turb.

Nx

ρ∗

]t−∆t

+
[
ρ∗Src.

Nx

ρ∗

]t

+
[
ρ∗Fall.

Nx

ρ∗

]t

. (6.78)

The fourth term on the right side of the equation of potential temperature perturbation (6.76) is The term
of gravity wave with vertical advection of potential temperature in the basic state.

The advection term is calculated as physical quanities with the sound wave mode by using the values
at the time t. The advection term is solved by using the second-order scheme as follows.

Adv.θt = u∗∂xθ
x

+ v∗∂yθ
y

+ W ∗∂ζθ
ζ

(6.79)

Adv.qt
x = u∗∂xqx

x
+ v∗∂yqx

y
+ W ∗∂ζqx

ζ
(6.80)

Adv.
Nx

ρ∗
t

= u∗∂x
Nx

ρ∗

x

+ v∗∂y
Nx

ρ∗

y

+ W ∗∂ζ
Nx

ρ∗

ζ

(6.81)

The advection terms are solved by using the fourth-order scheme as follows.

Adv.θ′t =
4
3

[
u∗∂xθ

x
+ v∗∂yθ

y
+ W ∗∂ζθ

ζ
]

− 1
3

[
u∗x

∂2xθ′
2x

+ v∗y
∂2yθ′

2y
+ W ∗ζ

∂2ζθ′
2ζ]

(6.82)

Adv.qt
x =

4
3

[
u∗∂xqx

x
+ v∗∂yqx

y
+ W ∗∂ζqx

ζ
]

− 1
3

[
u∗x

∂2xqx

2x
+ v∗y

∂2yqx

2y
+ W ∗ζ

∂2ζqx

2ζ]
(6.83)

Adv.
Nx

ρ∗
t

=
4
3

[
u∗∂x

Nx

ρ∗

x

+ v∗∂y
Nx

ρ∗

y

+ W ∗∂ζ
Nx

ρ∗

ζ
]
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− 1
3

[
u∗x

∂2x
Nx

ρ∗

2x

+ v∗y
∂2y

Nx

ρ∗

2y

+ W ∗ζ
∂2ζ

Nx

ρ∗

2ζ
]

(6.84)

The turbulent flux Hφ1, Hφ2, and Hφ3 for one scalar φ which is represented by (??) ∼ (??) are solved by
using difference as follows.

Hφ1 =
(

ρ̄νHh
1

G
1
2

)x [
∂x (Jdφ) + ∂ζ

(
J31φ

xζ
)]

(6.85)

Hφ2 =
(

ρ̄νHh
1

G
1
2

)y [
∂y (Jdφ) + ∂ζ

(
J32φ

yζ
)]

(6.86)

Hφ3 =
(

ρ̄νHv
1

G
1
2

)ζ

∂ζφ
ζ

(6.87)

Finally, the turbulent diffsion term is indicated as follows.

G
1
2 Turb.θ = ∂x

(
Jd

x
Hθ1

)
+ ∂y

(
Jd

y
Hθ2

)
+ ∂ζ

(
Hθ3 + J31Hθ1

ζ
x

+ J32Hθ2
ζ
y)

(6.88)

G
1
2 Turb.qx = ∂x

(
Jd

x
Hqx1

)
+ ∂y

(
Jd

y
Hqx2

)
+ ∂ζ

(
Hqx3 + J31Hqx1

ζ
x

+ J32Hqx2
ζ
y)

(6.89)

G
1
2 Turb.

Nx

ρ∗
= ∂x

(
Jd

x
HNx1

)
+ ∂y

(
Jd

y
HNx2

)
+ ∂ζ

(
HNx3 + J31HNx1

ζ
x

+ J32HNx2
ζ
y)

(6.90)

The method of discretization in the case of calculating the gravity wave mode with small
time step

When the gravity wave mode is calculated with small time step, the equation of potential temperature is
indicated as follows.

∂θ∗

∂t
= −

(
u∗ ∂θ′

∂x
+ v∗ ∂θ′

∂y
+ W ∗ ∂θ′

∂ζ

)
︸ ︷︷ ︸

[rm]

− ρ̄w
∂θ̄

∂ζ︸ ︷︷ ︸
[gm]

+G
1
2 Turb.θ︸ ︷︷ ︸

[physics]

+ ρ∗Src.θ︸ ︷︷ ︸
[physics]

(6.91)

The second term on the right side of is calculated by using the values at the time step ∆τ . The time
integration of this equation is shown as follows.

ρ∗
θ′τ+∆τ − θ′τ

∆τ
= −

[
ρ̄

ζ
w∂ζ θ̄

ζ
]τ

+ F t
θ (6.92)
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The time integration of vertical velocity (w) is shown since the buoyancy terms are calculated by using
the values at the time(∆τ).

ρ∗ζ wτ+∆τ − wτ

∆τ
= [∂ζ(αDiv∗)]τ + g

[
ρ∗

θ′

θ̄

ζ]τ

−
[
β (∂ζp

′)τ+∆τ + (1 − β) (∂ζp
′)τ
]

−
⎡
⎣β

(
gG

1
2

p′

c2
s

ζ)τ+∆τ

+ (1 − β)

(
gG

1
2

p′

c2
s

ζ)τ
⎤
⎦+ F t

w (6.93)

Terms which are calculated with large time step are modified as follows by this.

F t
w = −Adv.wt +

[
ρ∗Buoy.q

ζ
+ ρ∗fcu

xζ
]t

+
[
G

1
2 Turb.w

]t−∆t

(6.94)

F t
θ = −Adv.θt +

[
G

1
2 Turb.θ

]t−∆t

+ [ρ∗Src.θ]t (6.95)

time filter

The large time step integration is solved by using the leap-frog scheme. The separation of solutions between
the odd time step and the even time step is caused in the case of using this technique. So the Asselin time
filter (Asselin, 1972) is used to control the separation of solutions. This is the technique to filter physical
quanities at the time t after physical quanities are calculated at the time t + ∆t.

The Asselin time filter is indicated by using a representative variable ψ for forecasted variables u, v, w, p′, θ′, qx.

ψt = ψt + µa

(
ψt−∆t − 2ψt + ψt+δt

)
(6.96)

where µa is a factor of filter, and µa = 0.1 is a standard value.

6.2 Artificial numerical viscosity term

6.2.1 Necessity of numerical viscosity term

In previous section, it is shown that advection term is expressed by second-order or fourth-order central
difference, and calculation instability will be generated if the artificial numerical viscosity term is not
added. The reason for that is shown as follows.

One-dimensional linear wave equation :

∂u

∂t
+ c

∂u

∂x
= 0, (c > 0) (6.97)

The equation is discretized as follows. Arrangement of shifted grid points is not considered here.

∂u

∂t
=

ut+∆t
i − ut

i

∆t
,

∂u

∂x
=

ut
i+∆x − ut

i−∆x

2∆x
(6.98)

The equation (6.97) is written by
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ut+∆t
i = ut

i −
c

2

(
∆t

∆x

)(
ut

i+∆x − ut
i−∆x

)
(6.99)

From this equation, the value at time t + ∆t is calculated by using the value at time t. However, when
this calculation is performed, this calculation will break even if the relation of ∆t and ∆x satisfys the CFL
condition.

As the other discrete method, we consider first-order windward difference because its calculation can be
stable. However, it does not mean higher accuracy for the calculation. If this discretization is applied to
an equation (6.97) and solved as follows.

ut+∆t
i = ut

i − c

(
∆t

∆x

)(
ut

i − ut
i−∆x

)
(6.100)

However, if this is transformed into the form using the equation (6.99) which is the first discretization,

ut+∆t
i = ut

i −
c

2

(
∆t

∆x

)(
ut

i+∆x − ut
i−∆x

)
+

c

2

(
∆t

∆x

)(
ut

i+∆x − 2ut
i + ut

i−∆x

)
(6.101)

The added term is difference approximation of space second-degree differentiation
∂2u

∂x2
, and affects as the

diffusion term. Calculation is stably preformed using the first-order forward difference from this reason. In
central difference, however, for making the diffusion term, the artificial numerical viscosity term is added
to the advection term.

6.2.2 Numerical viscosity with the second-order or fourth-order diffusion term

Since the eventh-degree differentiation generally has the effect of diffusion, the deffision term explained in
the previous subsection can change the degree of the differentiation. Here, numerical viscosities with the
second-order and the fourth-order diffusion terms are explained.

Firstly, the second-order viscosity term is represented by the arbitrary physical quantities φ,

G
1
2 Diff.φ = ν2h

[
∂2 (ρ̄φ′)

∂x2
+

∂2 (ρ̄φ′)
∂y2

]
+ ν2v

∂2 (ρ̄φ′)
∂ζ2

. (6.102)

When φ are u, v, w, qx, Nx /ρ∗ , φ′ is perturbation from an initial value. When φ is θ, φ is the perturbation
from the basic state.
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ν2h and ν2v are viscosity coefficient, and are defined as follows.

ν2h =
α2h∆2

h

∆t
(6.103)

ν2v =
α2v∆2

v

∆t
(6.104)

where,

∆h = (∆x∆y)
1
2 (6.105)

∆v = ∆ζ (6.106)

In these equations, ∆h and ∆v are the horizontal and vertical averaged grid interval in the domain. More-
over, α2h and α2v are the non-dimensional quantities. For a stable calculation, the following requirement
needs to be satisfied.

α2h ≤ 1
8
, α2v ≤ 1

8
(6.107)

In this way, this viscosity term is applied to forecast variables other than pressure perturbation.

We define the second-order differentiation operator as

(
∂2

xφ
)
i
=

1
∆x

(φi+∆x − 2φi + φi−∆x) (6.108)

When u′, v′, w′, q′x, N ′
x /ρ∗ are made into perturbation from the initial value and θ′ is made into perturbation

from the basic state, difference notation are shown as follows.

G
1
2 Diff.u = ν2h

[
∂2

x

(
ρ̄

x
u′)+ ∂2

y

(
ρ̄

x
u′)]+ ν2v

[
∂2

ζ

(
ρ̄

x
u′)] (6.109)

G
1
2 Diff.v = ν2h

[
∂2

x

(
ρ̄

y
v′
)

+ ∂2
y

(
ρ̄

y
v′
)]

+ ν2v

[
∂2

ζ

(
ρ̄

y
v′)] (6.110)

G
1
2 Diff.w = ν2h

[
∂2

x

(
ρ̄

ζ
w′
)

+ ∂2
y

(
ρ̄

ζ
w′
)]

+ ν2v

[
∂2

ζ

(
ρ̄

ζ
w′
)]

(6.111)

G
1
2 Diff.θ = ν2h

[
∂2

x (ρ̄θ′) + ∂2
y (ρ̄θ′)

]
+ ν2v

[
∂2

ζ (ρ̄θ′)
]

(6.112)

G
1
2 Diff.qx = ν2h

[
∂2

x (ρ̄q′x) + ∂2
y (ρ̄q′x)

]
+ ν2v

[
∂2

ζ (ρ̄q′x)
]

(6.113)

G
1
2 Diff.

Nx

ρ∗
= ν2h

[
∂2

x

(
ρ̄
N ′

x

ρ∗

)
+ ∂2

y

(
ρ̄
N ′

x

ρ∗

)]
+ ν2v

[
∂2

ζ

(
ρ̄
N ′

x

ρ∗

)]
(6.114)

The fourth-order numerical viscosity term is considered as well as the second-order. When φ is u, v, w, qx, Nx /ρ∗ ,
φ′ is perturbation from an initial value. When φ is θ, φ is the perturbation from the basic state.

G
1
2 Diff.φ = −ν4h

[
∂4 (ρ̄φ′)

∂x4
+

∂4 (ρ̄φ′)
∂y4

]
− ν4v

∂4 (ρ̄φ′)
∂ζ4

(6.115)
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ν2h and ν2v are a viscosity coefficient, and are defined as follows.

ν4h =
α4h∆4

h

∆t
(6.116)

ν4v =
α4v∆4

v

∆t
(6.117)

where α2h and α2v are the non-dimensional quantities, and the values which are often used are as follows.

α4h = 0.001, α4v = 0.001. (6.118)

As well as the second-order, this viscosity term is applied to forecast variables other than pressure per-
turbation.

When u′, v′, w′, q′x, N ′
x /ρ∗ are made into perturbation from initial value and θ′ is made into perturbation

from the basic state, difference notation are shown as follows.

G
1
2 Diff.u = −ν4h

[
∂2

x

{
∂2

x

(
ρ̄

x
u′)}+ ∂2

y

{
∂2

y

(
ρ̄

x
u′)}]− ν4v∂2

ζ

[
∂2

ζ

(
ρ̄

x
u′)] (6.119)

G
1
2 Diff.v = −ν4h

[
∂2

x

{
∂2

x

(
ρ̄

y
v′
)}

+ ∂2
y

{
∂2

y

(
ρ̄

y
v′
)}]− ν4v∂

2
ζ

[
∂2

ζ

(
ρ̄

y
v′
)]

(6.120)

G
1
2 Diff.w = −ν4h

[
∂2

x

{
∂2

x

(
ρ̄

ζ
w′
)}

+ ∂2
y

{
∂2

y

(
ρ̄

ζ
w′
)}]

− ν4v∂2
ζ

[
∂2

ζ

(
ρ̄

ζ
w′
)]

(6.121)

G
1
2 Diff.θ = −ν4h

[
∂2

x

{
∂2

x (ρ̄θ′)
}

+ ∂2
y

{
∂2

y (ρ̄θ′)
}]− ν4v∂

2
ζ

[
∂2

ζ (ρ̄θ′)
]

(6.122)

G
1
2 Diff.qx = −ν4h

[
∂2

x

{
∂2

x (ρ̄q′x)
}

+ ∂2
y

{
∂2

y (ρ̄q′x)
}]− ν4v∂

2
ζ

[
∂2

ζ (ρ̄q′x)
]

(6.123)

G
1
2 Diff.

Nx

ρ∗
= −ν4h

[
∂2

x

{
∂2

x

(
ρ̄
N ′

x

ρ∗

)}
+ ∂2

y

{
∂2

y

(
ρ̄
N ′

x

ρ∗

)}]
− ν4v∂2

ζ

[
∂2

ζ

(
ρ̄
N ′

x

ρ∗

)]
(6.124)

It is more desirable to use this numerical viscosity term which has fourth-order diffusion term, since it
can distinguish from the diffusion term Turb.φ in Section ?? - “subgrid-scale diffusion”, and can diffuse
the ingredient of high wave number.
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As a result, including these numerical viscosity term, the term F t
φ calculated with large time step t

shown in (6.40) ∼ (6.43), (6.76) and (6.77) are able to be expressed as follows.

F t
u = −Adv.ut +

[
ρ∗fsv

yx − ρ∗fcw
ζ
x]t

+
[
G

1
2 Turb.u + G

1
2 Diff.u

]t−∆t

(6.125)

F t
v = −Adv.vt −

[
ρ∗fsu

xy
]t

+
[
G

1
2 Turb.v + G

1
2 Diff.v

]t−∆t

(6.126)

F t
w = −Adv.wt +

[
ρ∗ (Buoy.θ + Buoy.q)

ζ
+ ρ∗fcu

xζ
]t

+
[
G

1
2 Turb.w + G

1
2 Diff.w

]t−∆t

(6.127)

F t
θ = −Adv.θ′t +

[
G

1
2 Turb.θ′ + G

1
2 Diff.θ

]t−∆t

+ [ρ∗Src.θ′]t −
[
ρ̄

ζ
w∂ζ θ̄

ζ
]t

(6.128)

F t
q = −Adv.qt

x +
[
G

1
2 Turb.qx + G

1
2 Diff.qx

]t−∆t

+ [ρ∗Src.qx]t + [ρ∗Fall.qx]t (6.129)

F t
N = −Adv.

Nx

ρ∗
t

+
[
G

1
2 Turb.

Nx

ρ∗
+ G

1
2 Diff.

Nx

ρ∗

]t−∆t

+
[
ρ∗Src.

Nx

ρ∗

]t

+
[
ρ∗Fall.

Nx

ρ∗

]t

(6.130)

The terms F t
w and F t

θ in the case of calculating gravity wave mode with small time step shown in (6.94)
and (6.95) is able to be expressed as follows.

F t
w = −Adv.wt +

[
ρ∗Buoy.q

ζ
+ ρ∗fcu

xζ
]t

+
[
G

1
2 Turb.w + G

1
2 Diff.w

]t−∆t

(6.131)

F t
θ = −Adv.θt +

[
G

1
2 Turb.θ + G

1
2 Diff.θ

]t−∆t

+ [ρ∗Src.θ]t (6.132)

6.3 Boundary condition

Finit difference of the basic equations shown in the previous section includes operators at i−1, i+1, j−1, ....
For calculation of forecast variables at he grid points which locate along each boundary:

u; i = 1, nx, j = 1, ny − 1, k = 1, nz − 1
v; i = 1, nx − 1, j = 1, ny, k = 1, nz − 1
w; i = 1, nx − 1, j = 1, ny − 1, k = 1, nz
φ; i = 1, nx − 1, j = 1, ny − 1, k = 1, nz − 1,

(6.133)

where φ of the arbitrary scalar, and a boundary condition is needed to be given. We will explain about
some kinds of a boundary condition in CReSS in the followings. In the fourth-order calculation, values
at the grid points shifted one grid from the boundary are calculated with the second-order precision.

6.3.1 Lateral boundary condition

Four boundary conditions of periodic, fixed wall (mirror condition), non-gradient, and radiation, are ap-
plicable to a lateral boundary.

Periodic boundary condition

The periodic boundary condition is the condition that the values along the eastern (northern) boundary
are equal to those along the western (southern) boundary during an integration.
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In the cast that we use the periodic boundary condition in the east-west direction,

u1,j,k = unx−2,j,k, unx,j,k = u3,j,k

v1,j,k = vnx−2,j,k, vnx−1,j,k = v2,j,k

w1,j,k = wnx−2,j,k, wnx−1,j,k = w2,j,k

φ1,j,k = φnx−2,j,k, φnx−1,j,k = φ2,j,k

W1,j,k = Wnx−2,j,k, Wnx−1,j,k = W2,j,k,

(6.134)

or in the cast that we use the periodic boundary condition in the north-south direction,

ui,1,k = ui,ny−2,k, ui,ny−1,k = ui,2,k

vi,1,k = vi,ny−2,k, vi,ny,k = vi,3,k

wi,1,k = wi,ny−2,k, wi,ny−1,k = wi,2,k

φi,1,k = φi,ny−2,k, φi,ny−1,k = φi,2,k

Wi,1,k = Wi,ny−2,k, Wi,ny−1,k = Wi,2,k,

(6.135)

where φ is the arbitrary scalar.

Fixed wall boundary condition

In order to explain fixed wall boundary condition, for example, an east-and-west wall is shown here. Along
the east and west boundaries, x differentiation in uncompressible equation of conservation of mass and
free-slip condition are

∂

(
∂u

∂x
+

∂w

∂ζ

)/
∂x = 0,

∂w

∂x
= 0. (6.136)

It is drawn that the velocity u of x direction satisfys the following relation.

∂2u

∂x2
= 0 =⇒ u (x = −∆x, y, z) = u (x = ∆x, y, z) (6.137)

Under the situation, the fixed wall condition is determined as follows.
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In the cast that we use the periodic boundary condition in the east-west direction,

u1,j,k = −u3,j,k, unx,j,k = −unx−2,j,k

v1,j,k = v2,j,k, vnx−1,j,k = vnx−2,j,k

w1,j,k = w2,j,k, wnx−1,j,k = wnx−2,j,k

φ1,j,k = φ2,j,k, φnx−1,j,k = φnx−2,j,k

W1,j,k = W2,j,k, Wnx−1,j,k = Wnx−2,j,k,

(6.138)

or in the cast that we use the periodic boundary condition in the north-south direction,

ui,1,k = ui,2,k, ui,ny−1,k = ui,nx−2,k

vi,1,k = −vi,3,k, vi,ny,k = −vi,nx−2,k

wi,1,k = wi,2,k, wi,ny−1,k = wi,nx−2,k

φi,1,k = φi,2,k, φi,ny−1,k = φi,nx−2,k

Wi,1,k = Wi,2,k, Wi,ny−1,k = Wi,nx−2,k,

(6.139)

where φ is the arbitrary scalar.

Non-gradient boundary condition

Non-gradient boundary condition is the condition that the gradient of forecast variables across boundary
plane may be set to grad (φ) = 0.

In the cast that we use the periodic boundary condition in the east-west direction,

u1,j,k = u3,j,k, unx,j,k = unx−2,j,k

v1,j,k = v2,j,k, vnx−1,j,k = vnx−2,j,k

w1,j,k = w2,j,k, wnx−1,j,k = wnx−2,j,k

φ1,j,k = φ2,j,k, φnx−1,j,k = φnx−2,j,k

W1,j,k = W2,j,k, Wnx−1,j,k = Wnx−2,j,k,

(6.140)

or in the cast that we use the periodic boundary condition in the north-south direction,

ui,1,k = ui,2,k, ui,ny−1,k = ui,nx−2,k

vi,1,k = vi,3,k, vi,ny,k = vi,nx−2,k

wi,1,k = wi,2,k, wi,ny−1,k = wi,nx−2,k

φi,1,k = φi,2,k, φi,ny−1,k = φi,nx−2,k

Wi,1,k = Wi,2,k, Wi,ny−1,k = Wi,nx−2,k,

(6.141)

where φ is the arbitrary scalar.

Radiational boundary condition

Radiational boundary condition is set up so that the radiational conditions with one-dimensional linear
wave equation

∂φ

∂t
+ c

∂φ

∂x
= 0 (6.142)
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is satisfied for stopping the action of the unnatural solution produced in a boundary plane. Adding the
attenuation term,

∂φ

∂t
+ c

∂φ

∂x
= −γφ (6.143)

is used here. As nesting from a model output for a larger domain, such as objective analysis data, as an
initial and a boundary values. The difference between CReSS and the model for a larger domain for each
physical amount is used for a boundary condition.

∂ (φf − φc)
∂t

+ c
∂ (φf − φc)

∂x
= −γ (φf − φc) (6.144)

where φ is the arbitrary physical quantities, bottom characters f and c indicate the values of the larger
model and this model, respectively.

There are various methods in the way to solve phase velocity c in the above radiational condition. The
three methods can be chosen in CReSS. φ and φf − φc is expressed with Φ below.

[ (1) Method to calculate phase velocity for each grid point](1) Method to calculate phase velocity for each

grid point
In this case, equations excluded the attenuation term on the right side from the equations (6.143),

(6.144) is solved about phase velocity c. Non-dimensional phase velocity is directly solved.

Ct
b = ct

b

∆t

∆x
= − Φt+∆t

b − Φt−∆t
b

2Φt
b−1 − Φt+∆t

b − Φt−∆t
b

, −1 ≤ Ct
b ≤ 0, western edge or southern edge(6.145)

Ct
b = ct

b

∆t

∆x
= − Φt+∆t

b − Φt−∆t
b

Φt+∆t
b + Φt−∆t

b − 2Φt
b−1

, 0 ≤ Ct
b ≤ 1, eastern edge or northern edge(6.146)

These phase velocities should be calculated for each forecast variables. In the actual calculation, the
following values are used.

Ct
b = ct

b

∆t

∆x
= − Φt

b−1 − Φt−2∆t
b−1

2Φt−∆t
b−2 − Φt

b−1 − Φt−2∆t
b−1

, −1 ≤ Ct
b ≤ 0, westernmostorsouthernmost(6.147)

Ct
b = ct

b

∆t

∆x
= − Φt

b−1 − Φt−2∆t
b−1

Φt
b−1 + Φt−2∆t

b−1 − 2Φt−∆t
b−2

, 0 ≤ Ct
b ≤ 1, easternmostornorthernmost(6.148)

where bottom character b is the number of grid point on the boundary given by the equation (6.133).

[ (2) Method to calculate constant phase velocity in vertical direction](2) Method to calculate constant

phase velocity in vertical direction
Wave equation which assumed constant phase velocity in vertical is considered as follows.

∫ ztop

zsfc

∂Φ
∂t

dz + c

∫ ztop

zsfc

∂Φ
∂x

dz = −γΦ (6.149)
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Using the value calculated at the inner grid point on preceding time step,

Ct
b = ct

b

∆t

∆x
= −

∑kmax
k=kmin

{(
Φt

b−1 − Φt−2∆t
b−1

)
sgn
(
2Φt−∆t

b−2 − Φt
b−1 − Φt−2∆t

b−1

)}
∑kmax

k=kmin

∣∣2Φt−∆t
b−2 − Φt

b−1 − Φt−2∆t
b−1

∣∣ ,

· · · · −1 ≤ Ct
b ≤ 0, western edge or southern edge(6.150)

Ct
b = ct

b

∆t

∆x
= −

∑kmax
k=kmin

{(
Φt

b−1 − Φt−2∆t
b−1

)
sgn
(
Φt

b−1 + Φt−2∆t
b−1 − 2Φt−∆t

b−2

)}
∑kmax

k=kmin

∣∣Φt
b−1 + Φt−2∆t

b−1 − 2Φt−∆t
b−2

∣∣ ,

· · · · 0 ≤ Ct
b ≤ 1, eastern edge or northern edge(6.151)

where kmin and kmax are

u, v, φ ; kmin = 2, kmax = nz − 2 (6.152)
w ; kmin = 2, kmax = nz − 1. (6.153)

[ (3) Method to add advectional velocity to constant phase velocity](3) Method to add advectional velocity

to constant phase velocity
Phase velocities should be calculated for each forecast variable. c∗ is given as the propagation velocity

of typical gravity wave, such as about 30 m s−1. Using x-component velocity u for the eastern and western
boundaries and y-component velocity v for the northern and southern boundaries, a boundary condition
is given as follows.

Ct
b = ct

b

∆t

∆x
= (u − c∗)

∆t

∆x
, −1 ≤ Ct

b ≤ 0, westernmost (6.154)

Ct
b = ct

b

∆t

∆x
= (u + c∗)

∆t

∆x
, 0 ≤ Ct

b ≤ 1, easternmost (6.155)

Ct
b = ct

b

∆t

∆y
= (v − c∗)

∆t

∆y
, −1 ≤ Ct

b ≤ 0, southernmost (6.156)

Ct
b = ct

b

∆t

∆y
= (v + c∗)

∆t

∆y
, 0 ≤ Ct

b ≤ 1, northernmost (6.157)

[ (4) Method to use constant phase velocity](4) Method to use constant phase velocity

Only c∗ in (3) is used on assumption that a wave always goes away out of the calculation domain.
Therefore, phase velocities at all grid points on the lateral boundary plane are the same value. However,
a sign becomes reverse between eastern and western sides, and southern and northern sides.

In the case of (3) and (4), the same phase velocity as (2) is used for a vertical velocity component, such
as u on the eastern and western planes and v on the southern and northern planes.

By using the phase velocity solved in (1), (2), (3), and (4), the value at a grid point on the boundary
at next time step is,

for the variable integrated with small time step ∆τ ,
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Φτ+∆τ
b = Φτ

b − Ct
b

1 − Ct
b

(
Φt

b−1 − Φt−∆t
b

) ∆τ

∆t
− γΦt−∆t

b ∆τ, western edge or southern edge(6.158)

Φτ+∆τ
b = Φτ

b +
Ct

b

1 + Ct
b

(
Φt

b−1 − Φt−∆t
b

) ∆τ

∆t
− γΦt−∆t

b ∆τ, eastern edge or northern edge(6.159)

for the variable integrated with large time step ∆t,

Φt+∆t
b = Φt−∆t

b − 2Ct
b

1 − Ct
b

(
Φt

b−1 − Φt−∆t
b

)− γΦt−∆t
b ∆t, westernmostorsouthernmost (6.160)

Φt+∆t
b = Φt−∆t

b +
2Ct

b

1 + Ct
b

(
Φt

b−1 − Φt−∆t
b

)− γΦt−∆t
b ∆t, easternmostornorthernmost (6.161)

where attenuation constant γ has the dimension of time inverse number. It is thought that the inverse
number 1/γ is suitable more than one hour and less than twelve hours.

6.3.2 Boundary conditions at the top and bottom

Two kinds of a boundary condition, fixed wall (mirror condition) and non-gradient, are applicable to
boundary conditions at the top and bottom.

Fixed wall boundary condition

Basically, it can be considered as same as lateral fixed wall boundary condition. However, when we use
the terrain-following coordinate system, the relation between the velocity on Cartesian coordinate system
and contravariant velocity should be considered as follows.

W = (uJ31 + vJ32 + w)
/

G
1
2 (6.162)

Note that vertical velocity W when velocity is 0 on the boundary plane.
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On the boundary plane at the top (k = nz − 1),

W = 0, w = 0 (6.163)

and on the boundary plane at the bottom (k = 2),

W = 0, w = −uJ31 − vJ32. (6.164)

Therefore, boundary condition is given as follows.

ui,j,1 = ui,j,2, ui,j,nz−1 = ui,j,nz−2

vi,j,1 = vi,j,2, vi,j,nz−1 = vi,j,nz−2

φi,j,1 = φi,j,2, φi,j,nz−1 = φi,j,nz−2

Wi,j,2 = 0, Wi,j,1 = −Wi,j,3, Wi,j,nz−1 = 0, Wi,j,nz = −Wi,j,nz−2

(6.165)

where φ is the arbitrary scalar. By replacing vertical velocity W at the top and bottom boundaries with
the equation (6.162),

on boundary plane at the top (k = nz − 1),

wi,j,nz−1 = 0 (6.166)

wi,j,nz = −
(

uζJ31

x
+ vζJ32

y
+ WG

1
2

ζ
)

i,j,nz−2

(6.167)

on the boundary plane at the bottom (k = 2),

wi,j,2 = −
(
uζJ31

x
+ vζJ32

y)
i,j,2

(6.168)

wi,j,1 = −
(

uζJ31

x
+ vζJ32

y
+ WG

1
2

ζ
)

i,j,3

(6.169)

where pressure perturbation p’ on the boundary plane at the bottom is given by extrapolation as follows.

p′i,j,1 = 2p′i,j,2 − p′i,j,3 (6.170)
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Non-gradient boundary condition

Similarly to the lateral boundary,

ui,j,1 = ui,j,2, ui,j,nz−1 = ui,j,nz−2

vi,j,1 = vi,j,2, vi,j,nz−1 = vi,j,nz−2

wi,j,1 = wi,j,2, wi,j,nz = wi,j,nz−1

φi,j,1 = φi,j,2, φi,j,nz−1 = φi,j,nz−2

Wi,j,1 = Wi,j,2, Wi,j,nz = Wi,j,nz−1

(6.171)

where φ is the arbitrary scalar.

6.3.3 Sponge layer

In CReSS, the sponge layer set as arbitrary thickness is able to be set up. This is a layer for suppressing
and absorbing wave reflections near the boundary plane. An additional term is added to the basic equation
as follows.

∂ (ρ∗φ)
∂t

= −Adv.φ + ... − γh (x, y) ρ∗ (φ − φe) − γv (z) ρ∗ (φ − φe) (6.172)

where φ is an arbitrary forecast variable, φe is a variable of external data, such as an objective analysis,
γh (x, y) is an attenuation coefficient which becomes small toward each horizontal boundary plane. γv (z)
is attenuation coefficient which becomes small toward each vertical boundary plane.

For example, in the case of the west lateral boundary layer which made thickness of sponge layer d in
horizontal, γh (x, y) is given as follows.

γh =

⎧⎪⎨
⎪⎩

αh

(
1 − x

d

)3

, x ≤ d

0, x > d

(6.173)

In the case of the bottom boundary layer which made minimum height of sponge layer in vertical, γv (z)
is given as follows.

γv =

⎧⎪⎪⎨
⎪⎪⎩

0, z < zlow

αv

{
1 − cos

(
π

z − zlow

ztop − zlow

)}
, z ≥ zlow

(6.174)

where αh and αv are horizontal and vertical attenuation constants, and have dimension of the inverse
number of time. These inverse numbers 1/αh and 1/αv is called e-folding time. It is appropriate that
these constants are set up in the range about 1/100 ∼ 1/300 s−1 . In addition, it is suitable for the
thickness of sponge layer to set up in the number of several grid points in horizontal and the thickness of
vertical layer about the upper surface to 1/3 in vertical.

This term is calculated at t − ∆t. About the forecast variable calculated at a small time step, it is
treated as a value of a big time step 2∆t like advection term and numerical viscosity term.

The adjusted value to adjust was external data’s value φe, such as objective analysis, in the equation
(6.172). However, when a model is performed independently, and there is no objective analysis data for a
forecast variable, it can adjust to initial value φ0 or basic state value φ̄ as follows.
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∂ (ρ∗φ)
∂t

= −Adv.φ + ... − γh (x, y) ρ∗ (φ − φ0) − γv (z) ρ∗ (φ − φ0) (6.175)

∂ (ρ∗φ)
∂t

= −Adv.φ + ... − γh (x, y) ρ∗ (φ − φ̄
)− γv (z) ρ∗

(
φ − φ̄

)
(6.176)


