熱帯低気圧に関する CReSS 論文リスト

ここでは, 熱帯低気圧研究に CReSS を用いた論文の一覧をまとめています. 今後の CReSS シミュレーションの参考として利用して下さい.

2020

  • Tsujino, S. and H.-C. Kuo, 2020: Potential vorticity mixing and rapid intensification in the numerically simulated Supertyphoon Haiyan (2013). J. Atmos. Sci., 77, 1429-1454, doi:10.1175/JAS-D-19-0219.1, [Link]

    • Target: Rapid intensification; inner-core PV dynamics; intensification; typhoon
    • Method: PV and potential temperature budget calculation; piecewise PV inversion; omega equation
    • Approach: One case study (Typhoon Haiyan 2013)
    • Version: 3.4.2 (Atmosphere with fixed SST)
    • Resource: JAMSTEC Earth Simulator

  • Kanada, S., K. Tsuboki, and I. Takayabu, 2020: Future changes of tropical cyclones in the midlatitudes in 4-km-mesh downscaling experiments from large-ensemble simulations. SOLA, 16, 57-63, doi:10.2151/sola.2020-010. [Link]

    • Target: Future change of tropical cyclones in midlatitude regions
    • Method: Dynamical downscaling with large ensemble CGCM simulation (d4PDF)
    • Approach: Statistic study
    • Version: 3.4.x (Atmosphere coupled with 1-dimensional ocean model)
    • Resource: JAMSTEC Earth Simulator

  • Tsujino, S. and K. Tsuboki, Intensity change of Typhoon Nancy (1961) during landfall in a moist environment over Japan: A numerical simulation with spectral nudging. J. Atmos. Sci., 77, 1429-1454, doi:10.1175/JAS-D-19-0119.1. [Link]

    • Target: Structural change; landfall; interactions with orography, landsurface, and baroclinicity
    • Method: Sensitivity tests; budget calculations of potential temperature, tangential wind, and water vapor
    • Approach: One case study (Typhoon Nancy 1961)
    • Version: 3.4.2 (Atmosphere coupled with 1-dimensional ocean model and radiation of RRTM-G)
      • New technique: Installation of spectral nudging; Updated thermal budget at the sea surface with radiation processes but without radiative heating in atmosphere
    • Resource: Nagoya U. FX100

2019

  • Fujiwara, K., R. Kawamura, and T. Kawano, 2019: Remote thermodynamic impact of the Kuroshio Current on a developing tropical cyclone over the western North Pacific in boreal fall. J. Geophys. Res.: Atmos., 125, e2019JD031356, doi:10.1002/2019JD031356. [Link]

    • Target: Remote effect of moisture transport on typhoon intensity
    • Method: Sensitivity tests; forward/backward trajectories
    • Approach: One case study (Typhoon Chaba 2010)
    • Version: Unknown (Atmosphere with fixed SST)
    • Resource: Unknown

  • Kanada, S., H. Aiki, K. Tsuboki, and I. Takayabu, 2019: Future changes in typhoon-related precipitation in Eastern Hokkaido. SOLA, 15, 244-249, doi:10.2151/sola.2019-044. [Link]

    • Target: Future change in typhoon-related precipitation
    • Method: Pseudo global warming experiment
    • Approach: Three cases study (Typhoons Chanthu, Mindulle, and Kompasu in 2016)
    • Version: 3.4.x (Fully coupled atmosphere-ocean model)
    • Resource: Nagoya U. FX100

  • Kuo, H.-C., S. Tsujino, C.-C. Huang, C.-C. Wang, and K. Tsuboki, 2019: Diagnosis of the dynamic efficiency of latent heat release and the rapid intensification of Supertyphoon Haiyan (2013). Mon. Wea. Rev., 147, 1127-1147, doi:10.1175/MWR-D-18-0149.1. [Link]

    • Target: Rapid intensification; structural change
    • Method: Dynamical energy efficiency calculation
    • Approach: One case study (Typhoon Haiyan 2013)
    • Version: 3.4.2 (Atmosphere with fixed SST)
    • Resource: Nagoya U. FX100; JAMSTEC Earth Simulator

2017

  • Kanada, S., S. Tsujino, H. Aiki, M. Yoshioka, Y. Miyazawa, K. Tsuboki, and I. Takayabu, 2017: Impacts of SST patterns on rapid intensification of Typhoon Megi (2010). J. Geophys. Res.: Atmos., 122, 13245-13262, doi:10.1002/2017JD027252. [Link]

    • Target: Roles of SST on rapid intensification
    • Method: Sensitivity tests
    • Approach: One case study (Typhoon Megi 2010)
    • Version: 3.4.1 (Fully coupled atmosphere-ocean model)
    • Resource: Nagoya U. FX100

  • Fujiwara, K., R. Kawamura, H. Hirata, T. Kawano, M. Kato, and T. Shinoda, 2017: A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics. J. Geophys. Res.: Atmos., 122, 12502-12521, doi:10.1002/2017JD027557. [Link]

    • Target: Remote effect of moisture transport on typhoon intensity
    • Method: Sensitivity tests; forward/backward trajectories
    • Approach: One case study (Typhoon Man-yi 2007)
    • Version: Unknown (Atmosphere with fixed SST)
    • Resource: Unknown

  • Kanada, S., K. Tsuboki, H. Aiki, S. Tsujino, and I. Takayabu, 2017: Future enhancement of heavy rainfall events associated with a typhoon in the midlatitude regions. SOLA, 13, 246-251, doi:10.2151/sola.2017-045. [Link]

    • Target: Roles of SST on precipitation and intensity
    • Method: Pseudo global warming experiment
    • Approach: One case study (Typhoon Chanthu 2016)
    • Version: 3.4.1 (Fully coupled atmosphere-ocean model)
    • Resource: Nagoya U. FX100

  • Tsujino, S., K. Tsuboki, and H.-C. Kuo, 2017: Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven (2012). J. Atmos. Sci., 74, 3609-3634, doi:10.1175/JAS-D-16-0236.1. [Link]

    • Target: Concentric eyewall; inner-core structural change
    • Method: Budget calculation of equivalent potential temperature and PV; backward trajectory
    • Approach: One case study (Typhoon Bolaven 2012)
    • Version: 3.4.2 (Atmosphere coupled with 1-dimensional ocean model)
    • Resource: Nagoya U. FX100; RIKEN K-computer

  • Kanada, S., T. Takemi, M. Kato, S. Yamasaki, H. Fudeyasu, K. Tsuboki, O. Arakawa, and I. Takayabu, 2017: A multimodel intercomparison of an intense typhoon in future, warmer climates by four 5-km-mesh models. J. Climate, 30, 6017-6036, doi:10.1175/JCLI-D-16-0715.1. [Link]

    • Target: TC intensity and structure changes in future climate change
    • Method: Multi-model intercomparison
    • Approach: Statistic study
    • Version: Unknown (Atmosphere with 1-dimensional ocean model)
    • Resource: JAMSTEC Earth Simulator

2016

  • C.-C. Wang, S.-Y. Huang, S.-H. Chen, C.-S. Chang, and K. Tsuboki, 2016: Cloud-resolving typhoon rainfall ensemble forecasts for Taiwan with large domain and extended range through time-lagged approach. Wea. Forecasting, 31, 151-172, doi:10.1175/WAF-D-15-0045.1. [Link]

    • Target: Typhoon-induced rainfall; rainfall predictability
    • Method: Time-lagged ensemble forecast
    • Approach: Statistic study
    • Version: 2.3 (Atmosphere with 1-dimensional ocean model)
    • Resource: JAMSTEC Earth Simulator

2015

  • Tsuboki, K., M. K. Yoshioka, T. Shinoda, M. Kato, S. Kanada, and A. Kitoh, 2015: Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett., 42, 646-652, doi:10.1002/2014GL061793. [Link]

    • Target: TC intensity in future climate change
    • Method: Dynamical downscaling under a future climate
    • Approach: Statistic study
    • Version: Unknown (Atmosphere with 1-dimensional ocean model and radiation of MSTRN-X)
    • Resource: JAMSTEC Earth Simulator; Nagoya U. super computers (unknown system)

2014

  • Mori, N., M. Kato S. Kim, H. Mase, Y. Shibutani, T. Takemi, K. Tsuboki, and T. Yasuda, 2014: Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophys. Res. Lett., 41, 5106-5113, doi:10.1002/2014GL060689. [Link]

    • Target: Storm surge in coastal regions
    • Method: Multi-model intercomparison
    • Approach: One case study (Typhoon Haiyan 2013)
    • Version: Unknown (Atmosphere with fixed SST)
    • Resource: Unknown

2012

  • Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of Asymmetric Latent Heating on Typhoon Movement Crossing Taiwan: The Case of Morakot (2009) with Extreme Rainfall. J. Atmos. Sci., 69, 3172-3196, doi:10.1175/JAS-D-11-0346.1. [Link]

    • Target: Interaction between typhoon and orography; modulation of typhoon track; asymmetric precipitation
    • Method: Sensitivity tests; diagnosis of PV vector
    • Approach: One case study (Typhoon Morakot 2009)
    • Version: 2.3 (Atmosphere coupled with fixed SST)
    • Resource: Unknown

  • Nomura, M. and K. Tsuboki, 2012: Numerical study of precipitation intensification and ice-phase microphysical processes in typhoon spiral band. J. Meteor. Soc. Japan, 90, 685-699, doi:10.2151/jmsj.2012-508. [Link]

    • Target: Rainband; cloud microphysics
    • Method: water tendency analysis; backward trajectory with ice particles
    • Approach: One case study (Typhoon Sinlaku 2002)
    • Version: Unknown (Atmosphere)
    • Resource: U. of Tokyo HITACHI SR-8000; JAMSTEC Earth Simulator

  • Nomura, M., K. Tsuboki, and T. Shinoda, 2012: Impact of sedimentation of cloud ice on cloud-top height and precipitation intensity of precipitation systems simulated by a cloud-resolving model. J. Meteor. Soc. Japan, 90, 791-806, doi:10.2151/jmsj.2012-514. [Link]

    • Target: Upper-level cloud ice
    • Method: SDSU; water tendency analysis
    • Approach: One case study (Typhoon Sinlaku 2002)
    • Version: Unknown (Atmosphere)
      • New technique: Consideration of falling speed in the cloud-ice category
    • Resource: U. of Tokyo HITACHI SR-11000; Nagoya U. HPC2500

  • Akter, N. and K. Tsuboki, 2012: Numerical simulation of Cyclone Sidr using a cloud-resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789-810, doi:10.1175/2011MWR3643.1. [Link]

    • Target: Rainband
    • Method: Dynamical analyses
    • Approach: One case study (Cyclone Sidr 2007)
    • Version: Unknown (Atmosphere with fixed SST)
    • Resource: Unknown

2010

  • Akter, N. and K. Tsuboki, 2010: Characteristics of supercells in the rainband of numerically simulated Cyclone Sidr. SOLA, 6A, 25-28, doi:10.2151/sola.6A-007. [Link]

    • Target: Rainband; supercell
    • Method: Convective cell detection
    • Approach: One case study (Cyclone Sidr 2007)
    • Version: Unknown (Atmosphere with fixed SST)
    • Resource: Unknown