[Japanese]
卒業論文要旨(田村 望海)

台風Mindulle (2021) における初期海面水温に対する強度の感度

田村 望海


近年、台風の進路予測は向上しているが、強度予測は改善がない。この要因として予測モデルや予測に用いる初期値、急発達する台風の増加が挙げられる。台風の運動エネルギーは水蒸気の潜熱であり、その供給源は海洋であることが知られている。また海面水温と台風強度には強い関係があり、海面水温のわずかな違いが最大強度に大きな違いをもたらすことが分かっている。しかし数値モデルの初期値。境界値として与えられる海面水温は不確実性を持ち、台風の強度予測を改善するためには初期海面水温とその不確実性の大きさと台風強度の関係を知る必要がある。

そこで本研究では、2021年台風Mindulle (16号) を対象に、鉛直一次元海洋モデルが組み込まれている雲解像モデルCReSS (Cloud Resolving Storm Simulator) を用い海面水温の初期値に対する台風強度の感度を明らかにすることを目的とする。

海面水温の初期値にバイアスを加えた結果、初期海面水温のバイアスと生涯最低気圧に負の相関、初期海面水温のバイアスと生涯最低気圧になるまでの発達率に正の相関があることが示された。また海面水温の初期値に摂動を加えた結果、その摂動の振幅と生涯最低気圧、生涯最低気圧になるまでの発達率に相関は見られず、中心気圧の予報誤差の大きさは初期値の不確実性の大きさに依存しないことが示された。

これらの結果により、台風の最大強度が初期海面水温に依存することが確認でき、これらの対応を一般化できる可能性が示唆された。また強度予測の誤差の大きさは初期海面水温の摂動の振幅に依存しないことが示唆された。

[戻る]



[English]

Intensity Sensitivity of Typhoon Mindulle (2021) on the Initial Values of Sea Surface Temperature

Nozomi Tamura



In recent years, typhoon track forecast has been improved, though there has been no improvement in intensity forecast. Possible reasons of the problem include defects of forecast models and uncertainty in initial values used in forecasts. The kinetic energy source of typhoon is the latent heat of water vapor supplied from the ocean. Therefore, there is a strong relationship between sea surface temperature (SST) and maximum potential intensity of typhoon, and a small difference in SST may cause large differences in the maximum intensity. However, SSTs given as initial conditions in numerical models have some types of uncertainty.

Wind stress imposed on the upper ocean by a typhoon can limit the intensity primarily through wind-induced mixing of the upper ocean and subsequent cooling of the sea surface. Decreasing in SST due to the passage of a typhoon may be predicted by a vertical one-dimensional (1-D) process. However, there are few studies examining the ocean latent heat flux using a 1-D ocean model on real typhoons.

The purpose of this study is to clarify the sensitivity of typhoon intensity to initial SST values for Typhoon Mindulle (2021) using CReSS (Cloud Resolving Storm Simulator), a cloud-resolving model that incorporates a vertical 1-D ocean model.

One control experiment and two sets of sensitivity experiment were performed. The sensitivity experiment set I examined the sensitivity of SST bias in the initial SST values. Eight experiments were conducted with biases ranging from -2 to +2 °C. The results indicate that there is a clear negative correlation between the initial SST bias and lifetime-minimum central pressure (LMCP), and a positive correlation between the initial SST bias and the intensifying rate in the development period from the initial time to the time of the LMCP. These results confirm that the maximum intensity of typhoon strongly depends on the initial SST bias.

The sensitivity experiment set II examined the intensity sensitivity to perturbations in initial SST data. Five experiments were conducted with uniform random perturbations with amplitudes ranging from ±0.01 to ±2.0 °C. No correlation was found between the amplitude of the perturbations and the LMCP or the intensifying rate until the LMCP. This indicates that the forecast error of the typhoon intensity does not depend on the amplitude of random error of the initial SST values. In all experiments of sensitivity experiment set II, the central pressure was about 5 hPa higher than in the control experiment. Therefore, no matter how much the initial SST noise is reduced, there remains uncertainty of about 5 hPa.


[BACK]